United States Patent

US009244653B2

(12) 10) Patent No.: US 9,244,653 B2
Moyer 45) Date of Patent: *Jan. 26, 2016
(54) METHOD AND DEVICE FOR HANDLING 6,009,511 A 12/1999 Lynch et al.
DATA VALUES 6,138,135 A 10/2000 qup
6,170,001 Bl 1/2001 Hinds et al.
. - L . 6,519,694 B2 2/2003 Harris
(71)  Applicant: William C. Moyer, Dripping Springs, 6,560,623 B1* 52003 SMith ..oeovvorererererenenn. 708/551
TX (US) 6,976,050 B2  12/2005 Steele, Jr.
7,069,288 B2 6/2006 Steele, Jr.
(72) Inventor: William C. Moyer, Dripping Springs, 7,133,890 B2 11/2006 Stecle, Jr.
TX (US) 7,191,202 B2 3/2007 Steele, Jr.
7,228,324 B2 6/2007 St_eele, Jr.
(73) Assignee: FREESCALE SEMICONDUCTOR, 2010/0217579 AL 82010 Lietal
INC., Austin, TX (US) OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this U.S. Appl. No. 14/040,795, filed Sep. 30, 2013, entitled “Method and
patent is extended or adjusted under 35 Device for Generating Floating-Point Values”.
U.S.C. 154(b) by 361 days. Non-Final Office Action mailed Apr. 28, 2015 for U.S. Appl. No.
. . . . . 13/841,630, 16 pages.
Thl.s patent is subject to a terminal dis- Non-Final Office Action mailed Jun. 15, 2015 for U.S. Appl. No.
claimer. 14/040,795, 6 pages.
Notice of Allowance mailed Sep. 23, 2015 for U.S. Appl. No.
(21) Appl. No.: 13/841,242 14/040,795, 7 pages.
Final Office Action mailed Aug. 17, 2015 for U.S. Appl. No.
(22) Filed: Mar. 15,2013 13/841,630, 5 pages.
US 5,987,901, 11/1999, Luedtke et al. (withdrawn)
(65) Prior Publication Data
% o .
US 2014/0280424 A1 Sep. 18, 2014 cited by examiner
(51) Int.ClL Primary Examiner — Tan V. Mai
GO6F 7/38 (2006.01)
) [GJ056FC l7/483 (2006.01) (57) ABSTRACT
1S GOGF 7/483 (2013.01) A floating point value can represent a number or something
(58) Field of Classification Search that is not a number (NaN). A ﬂoatlpg pomt.value that is a
CPC ettt GOGF 7/483 NaN ha\{mg data ﬁeld. th?‘t stores 1nf0rmat10nf such as a
USPC 708/495 propagation count that indicates the number of times a NaN
See application file for complete search history. value has been propagated through instructions. A NaN
evaluation instruction can determine whether one or more
(56) References Cited operands is a NaN operand of a particular type, and if so can

U.S. PATENT DOCUMENTS

5,481,489 A 1/1996 Yanagida et al.
5,748,516 A 5/1998 Goddard et al.
5,931,943 A 8/1999 Orup

generate a result that is a NaN of a different type. An excep-
tion can be generated based upon the NaN of the different
type being provided as a resultant.

20 Claims, 4 Drawing Sheets

OPERAND AND PROVIDE AS
NaN COUNT RESULTANT

PROCESSING OF ZERO (0)

¢ 301 N 300
RECEIVE A FLOATING
POINT INSTRUCTION
HAVING A FLOATING
POINT OPERAND
304
1S IS
OPERAND A RESULTANT ANYES
NaN NaN
? ?
YES NO
¢ 303 ¢305 ! ¢306
INCREMENT NaN COUNT OF NORMAL PROVIDE RESULTANT

WITH NaN COUNT




U.S. Patent Jan. 26, 2016 Sheet 1 of 4 US 9,244,653 B2
¢ 101
INTERGRATED CIRCUIT §103
¢ 104 ¢ 105
INSTRUCTION
EXECUTION UNIT FETCH UNIT
§107 §106
ARITHMETIC UNIT DATA
FETCH UNIT
§108
STORE UNIT
120 §122 §126 §126
¢109 | I
CONTROL REGISTERS 11&> .
o ][ s
('S | |
DATA PROCESSING DEVICE
A
- Y -
< - >
! §102

FIG. 1

EXTERNAL MEMORY




U.S. Patent Jan. 26, 2016 Sheet 2 of 4 US 9,244,653 B2

204
r_-_JJ:~!EN_§PECIFIER
207
205 206 NaN DATA FIELD
NaN INDICATOR FIELD §  { NaN TYPE FIELD

t‘— 202

203
op; EXPONENT FIELD  MANTISSA FIELD
SIGN FIELD

FIG. 2

§301 ’/,_300

RECEIVE A FLOATING

POINT INSTRUCTION

HAVING A FLOATING
POINT OPERAND

304
IS

RESULTANT A
NaN
?

IS
OPERAND A
NaN
?

YES NO

§303

INCREMENT NaN COUNT OF
OPERAND AND PROVIDE AS
NaN COUNT RESULTANT

§305 J §306

PROVIDE RESULTANT

NORMAL
WITH NaN COUNT
PROCESSING OF ZERO (0)

FIG. 3



U.S. Patent Jan. 26, 2016 Sheet 3 of 4 US 9,244,653 B2

RECEIVE AN INSTRUCTION
HAVING TWO FLOATING
POINT OPERANDS

402

BOTH NUMBERS BOTH QUIET NaNs

CHECK
OPERANDS

ONE QUIET NaN
§408

v $403 [ INCREMENT NaN DATA VALUE OF
QUIET NaN OPERAND AND
PERFORM PROVIDE MODIFIED OPERAND AS
OPERATION RESULTANT OF INSTRUCTION !

l///////// 409
OPERAND 1 _~Spi kcT QUIET

NaN OPERAND

OPERAND 2
§411

§410

INCREMENT NaN DATA
VALUE OF OPERAND 1
AND PROVIDE MODIFIED
OPERAND AS RESULTANT
OF INSTRUCTION

INCREMENT NaN DATA
VALUE OF OPERAND 2
AND PROVIDE MODIFIED
OPERAND AS RESULTANT
OF INSTRUCTION

404

IS
RESULT A NaN
?

§406

YES

PROVIDE RESULTANT

WITH NaN SPECIFIER

AND PREDEFINED NaN
DATA VALUE

NO
§407

PROVIDE RESULT
OF OPERATION
AS RESULTANT

FIG. 4



U.S. Patent Jan. 26, 2016 Sheet 4 of 4 US 9,244,653 B2

500
504 ¥
r_‘ﬁ_zj:;ﬂiﬂ_sPECIFIER
508
506 NaN DATA 2 FIELD
NaN TYPE FIELD 507

505 NaN DATA FIELD
NaN INDICATOR FIELD
t*— 502

503
501 EXPONENT FIELD  NaNTISSA FIELD
SIGN FIELD

FI1G. 5

601

OPERAND 1

602
NaN EVALUATION S
INSTRUCTION LOGIC RESULTANT

OPERAND N

FIG. 6

§701

RECEIVE A FLOATING POINT INSTRUCTION
HAVING ONE FLOATING POINT OPERAND

OPERAND IS

NaN OF PARTICULAR

TYPE
?

YES

703? §7U4

Y

GENERATE EXCEPTION ASSOCIATED

WITH NaN OF A DIFFERENT TYPE HANDLE NORMALLY

FIG. 7



US 9,244,653 B2

1
METHOD AND DEVICE FOR HANDLING
DATA VALUES

CROSS-REFERENCE TO RELATED
APPLICATION(S)

The present application is related to co-pending U.S. patent
application Ser. No. 13/841,630, entitled “METHOD AND
DEVICE FOR GENERATING AN EXCEPTION” filed on
Mar. 15, 2013, the entirety of which is herein incorporated by
reference.

BACKGROUND

1. Field of the Disclosure

The present disclosure relates to electronic devices, and
more specifically to data processing devices having floating-
point processing capabilities.

2. Description of the Related Art

Data processing devices may use integer numbers or float-
ing-point numbers to carry out computations. Floating-point
numbers are use for calculations involving very large or very
small numbers. Floating-point numbers are typically repre-
sented within a data processing device by an exponent and
mantissa, or significand. Various formats for representing
numbers within a data processing device are possible, and in
particular for representing floating point numbers. IEEE 754
is a standard that specifies a family of related floating-point
formats. Formats, including IEEE 754, allow for values to be
stored that represent something other than a floating-point
number in response to conditions that can arise during a
floating-point calculation. For example, the result of dividing
zero by zero is not a number in the normal sense. Thus, a
floating-point format can specify a particular manner to store
information that by definition represents a floating-point
result that is not a number. In accordance with a floating-point
format, a value that represents something other than a num-
ber, e.g., not a number can be referred to a “NaN”, or a “NaN
value”.

NaN values may participate as input operands to floating-
point instructions in some data processing systems. Such
floating-point instructions, in response to receiving a NaN as
an operand, will produce a resultant that is also a NaN value.
A resultant or operand having a NaN value can be referred to
as “resultant/operand that is a NaN”, or as “NaN resultant/
operand”.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure may be better understood, and its
numerous features and advantages made apparent to those
skilled in the art by referencing the accompanying drawings.

FIG. 1 is a diagram of a data processing device utilizing
conditional floating-point signaling NaN generation in accor-
dance with at least one embodiment of the present disclosure.

FIG. 2 is adiagram of a floating-point format in accordance
with at least one embodiment of the present disclosure.

FIG. 3 is a flow diagram illustrating a method for perform-
ing an embodiment of the present disclosure.

FIG. 4 is a flow diagram illustrating a method for perform-
ing an embodiment of the present disclosure.

FIG. 5 is a diagram of a floating-point format having two
NaN data values in accordance with at least one embodiment
of the present disclosure.

FIG. 6 is a diagram of a NaN evaluation instruction in
accordance with at least one embodiment of the present dis-
closure.

10

15

20

25

30

35

40

45

50

55

60

2

FIG. 7 is a flow diagram illustrating a method correspond-
ing to a particular type of NaN evaluation instruction.

The use of the same reference symbols in different draw-
ings indicates similar or identical items.

DETAILED DESCRIPTION OF THE DRAWINGS

A particular format for representing floating point values
supports the concept of NaN values that represent something
other than a number. For example, a divide operation can
result in a floating point value that is a NaN in response to
dividing the number zero by the number zero (0/0). When a
floating point NaN is an operand in another arithmetic opera-
tion, the resultant is typically a NaN. According to a particular
embodiment of the present disclosure, a floating point format
is used that can include a data value field that stores a NaN
propagation count that is incremented each time a NaN result-
ant is provided based upon a NaN operand. Thus, a NaN
resultant can provide an indicator as to a particular instruction
that first generated the NaN value.

A NaN evaluation instruction is also disclosed herein that
causes an exception to occur in response to having a NaN
operand. This allows floating point code that generates NaNs
to proceed without the overhead of checking every resultant
for a NaN value, and handling every occurrence by an excep-
tion.

In accordance with a floating-point format, the term “float-
ing-point number” (FPN), and its variants, as used herein is
intended to refer to an actual floating-point number. The term
“NaN”, and its variants, as used herein is intended to refer to
something that is not a floating-point number. The term
“floating-point value” as used herein is intended to refer to a
value stored according to a particular floating-point format
that can be either a floating-point number or a floating-point
NaN.

FIG. 1 illustrates a system device (system 100) that can
handle floating-point values in accordance with at least one
embodiment of the present disclosure. System 100 includes
an integrated circuit 101 that can be connected to various
external resources, such as external memory 102. Integrated
circuit 101 can be an integrated circuit die, a packaged device
that can include one or more integrated circuit die, a printed
circuit board that can include one or more packaged devices
and integrated circuit die, the like, and combinations thereof.

Inthe depicted example, the integrated circuit 101 includes
adata processor device 103, such as a data processor core, that
includes an execution unit 104 connected to an instruction
fetch unit 105, to a data fetch unit 106, to a store unit 108, to
control registers 109 (connection not shown), and to a storage
location 110 (connection not shown), that is presumed to be a
data register set.

During operation, the instruction fetch unit 105 fetches
instructions needed by execution unit 104 from various
memory locations that can include external memory 102,
cache (not illustrated), and the like. During execution of a
fetched instruction, the execution unit 104 will determine the
location of operands needed by the instruction being
executed, and provide the location information, such as an
address, to data fetch unit 106. In response, data fetch unit 106
retrieves the requested operand from various locations that
can include one or more of memory, register set 110, cache
(not illustrated) and the like. Execution unit 104 performs
arithmetic operations during execution of an instruction using
arithmetic unit 107. When an instruction is retired, one or
more resultants are provided to store unit 108, which stores



US 9,244,653 B2

3

information at appropriate locations that can include one or
more of memory, data registers 110, cache (not illustrated)
and the like.

Execution unit 104 can process floating-point instructions
having one or more floating-point operands. For purposes of
discussion, it is presumed that each operand of a particular
floating-point instruction is identified by information that
resides at a distinct location of the floating-point instruction.
For example, a floating-point instruction having two oper-
ands, such as a divide instruction, will have a first field at a
first location, that indicates where a dividend stored, and a
second field of the second location, that indicates where the
divisor stored.

Register set 110 in FIG. 1 contains one or more floating-
point registers, including registers 120 and 130 that store
floating-point values of a particular floating-point format.
Register 120 is presumed to currently store a floating-point
number, and is therefore illustrated to have a particular par-
titioning, as would be defined by a particular floating-point
format, that is used to represent a floating-point number. In
particular, a floating-point number is represented by informa-
tion stored at various locations as indicated by fields 122,124,
and 126 of FIG. 1, which include a sign field 122, an exponent
field 124, and a mantissa field 126. Mantissa field 126 may
also be referred to as a significand field.

Sign field 122, exponent field 124 and mantissa field 126
each occupy a number of bits defined in a floating-point
format. In the present example, with the registers in register
set 110 being 32 bits wide in total, a floating-point format may
specify sign field 122 to be one bit wide, exponent field 124 to
be eight bits wide, and mantissa field 126 to be 23 bits wide.
For convenience of description, the information stored at the
various fields and registers disclosed herein can be referred to
using the same reference numerals as a corresponding field or
register. Thus, it would be proper to state herein that a sign bit,
or a sign bit 122, can be stored at sign field 122. Those skilled
in the art will appreciate that a variety of floating-point for-
mats are possible and that embodiments of the present dis-
closure may not depend on the details of a particular number
format. Further, a single data processing device may imple-
ment more than one format for floating-point numbers in
conjunction with embodiments of the present disclosure.

As illustrated register 130 currently stores a NaN, and is
therefore illustrated to indicate a particular partitioning for
the given floating format that is used to represent a NaN. In
particular, one or more a specific values, referred to as NaN
indicator(s) 132, occupy one or more bit locations that can
include sign bit 122, exponent 124 and mantissa 126 in reg-
ister 120. In some embodiments, the bits in NaN indicator 132
may have specific values that indicate a register stores a NaN
value. In other embodiments, the set of bits may have pre-
defined characteristics that indicate a NaN value. For
example, in an embodiment a NaN value may be indicated by
a series of 8 consecutive bits with a value of °1” followed by at
least one bit with a value of ‘1’ in the remaining bits of NaN
indicator 132.

FIG. 2 illustrates one example of a partition 200 of a
floating-point value for a particular floating-point format that
can having floating-point values that represent either floating-
point numbers (FPNs) or NaNs according to one format. In
particular, values representing floating-point numbers are
associated with a sign field 201, an exponent field 202, and a
mantissa field 203. Values representing NaNs are associated
with a NaN indicator field 205, a NaN type field 206, and a
NaN data field 207. The NaN indicator field and the NaN type
field collectively form a field referred to herein as a NaN
specifier field 204. A NaN data value provided at the NaN data

5

10

15

20

25

30

35

40

45

50

55

60

65

4

field 207 can be used to provide various other types of infor-
mation with a NaN. In an embodiment, the NaN data value is
a count value that indicates the number of times a particular
NaN has been propagated through a sequence of floating-
point computations, and therefore the NaN Data field can also
be referred to herein as a NaN count field, or a count field.
Note that not all bits of the NaN value need to be associated
with a particular field.

Inthe illustrated embodiment, exponent field 202 and NaN
indicator field 205 comprise the same bit positions within
floating-point partition 200. According to a particular format,
the value ‘11111111” in Exponent field 202/NaN indicator
field 205 indicates that a floating-point value is a NaN, while
other values of Exponent field 202/NaN indicator field 205
indicate that a floating-point value is a number. A floating-
point value that includes a NaN indicator/exponent field with
the value “11111111° may be referred to herein as a NaN
value. For convenience, a value of NaN data field 207 may be
referred to as a data value, a NaN data value, a count, a count
value, and the like.

According to a particular embodiment, the NaN Type field
206 can specify one of a plurality of types of NaN values. One
type of NaN value, referred to as a signaling NaN, causes an
exception condition when provided as the resultant of an
instruction. For example, a signaling NaN resultant can cause
a floating-point invalid operation exception or an exception
specific to generation of the signaling NaN. An exception
caused by a signaling NaN is referred to herein as a signaling
NaN exception. By way of example, the value ‘100’ in NaN
Type field 206 indicates the NaN is a signaling NaN or
“sNaN” that causes a sNaN exception. According to one
embodiment, generation of sNaN exceptions can be enabled
and disabled from occurring when a sNaN is generated during
certain operating modes. For example, a control bit of control
register 109 can be asserted to enable generation of sNaN
exceptions, and can be negated to disable generation of sNaN
exceptions. According to another embodiment, sNaN excep-
tions caused by the first type of instruction cannot be disabled.

Another type of NaN value referred to as a quiet NaN, or a
gqNaN, does not cause an exception condition upon being
generated as a resultant of an instruction, at least in some
operating modes. For example, the value ‘010’ in NaN Type
field 206 indicates that a NaN value is quiet NaN.

Bits not specifically designated as being part of a field
when the floating-point value is a NaN can be defined to have
a particular value by the particular floating-point format or
can be undefined. For example, it will be a particular format
could define all of the fields illustrated at F1G. 2 except for the
NaN Data field. However, because the location where the
NaN Data field 207 resides is undefined by the particular
format, a user can implement a different format, that is an
extension of the main format, in which the NaN data field is
defined.

It will be appreciated that the specific sizes and values for
bit fields as used herein are used for purposes of discussion.
Other field sizes and values may be used in embodiments of
the present disclosure. A particular type of NaN value may be
indicated by more than one value of NaN specifier 204. Fur-
ther, a data processing device may use more than one format
for floating-point values in conjunction with embodiments of
the present disclosure.

Referring back to FIG. 1, control register 118 of the data
processing device 103 can include a control register 118 that
includes one or more programmable indicators, such as at a
field 119, that can be used to control various functionality of
the data processors. For example, a NaN type indicator can be
stored at field 119 to indicate whether NaN values produced



US 9,244,653 B2

5

as resultants of arithmetic instructions are sNaNs or gNaN.
By way of example, the embodiments described NaNs that
resultants of arithmetic instructions, and other instructions,
are qNaNs unless stated otherwise.

An instruction downstream from an instruction that first
generated a qNaN resultant, e.g., based on one or more FPNs,
can receive the qNaN resultant as an operand. In response to
receiving a gNaN resultant an operand, the second arithmetic
floating-point instruction can itself provide gNaN resultant.
When a gNaN resultant is based upon a qNaN operand, the
gNaN is said to be “propagated” through the instruction.

According to a specific embodiment, a qNaN data value
can include a count that indicates the number of times a
particular gNaN has been propagated. FIG. 3 illustrates a flow
diagram 300 of an embodiment of the present disclosure in
which a floating-point instruction increments a count value in
a qNaN operand.

Flow diagram 300 begins with step 301, receiving a float-
ing-point instruction having a single floating-point operand.
As the instruction is executed by an execution unit, the execu-
tion unit communicates with a data fetch unit to receive oper-
ands the instruction’s operands. As described previously, a
portion of the floating-point operand, e.g., the exponent/NaN
indicator field, stores information indicating whether the
value of the operand represents a floating-point number
(FPN) or a NaN, as described previously.

At step 302, the instruction operand is evaluated to deter-
mine whether the operand is a qNaN. In response to the
operand being a qNaN, the method progresses to step 303
where the qNaN data value, which is as discussed above
represents a qNaN propagation count, is incremented and the
incremented operand value is provided as the resultant of the
current instruction. In response to the operand not being a
gqNaN, the operand is a FPN, and the method progresses from
step 302 to step 304, which determines whether the calcula-
tion performed by the floating-point instruction caused a
gqNaN to be generated. If not, flow proceeds normally at 305
and a floating-point number resultant is provided. Otherwise,
if execution resulted in a gNaN resultant flow proceeds from
304 to 306, where a qNaN resultant having a data value
representing a count of zero is provided. The count of zero is
predefined to the count value that indicates the qNaN was
generated based upon a FPN, not by propagating a qNaN
operand.

Table 1 illustrates operation of a particular arithmetic float-
ing-point instruction that increments a count value stored in a
data value field of a gNaN operand. The instruction can be a
square root instruction having the format “SQRT OPERAND
DESTINATION”, where OPERAND identifies the value of
which the square root will be determined, and RESULTANT
is the resultant as provided. At Row 1, the floating-point
instruction has received an operand that is a FPN, and a
resultant is generated that can be either a FPN or a gNaN with
a data value (DV) having a predefined value, such as zero.
According to a particular embodiment the DV is zero (0) at
line 1 to indicate the resultant qNaN was generated based
upon an FPN; e.g., it was not propagated based upon an
operand qNaN.

TABLE 1
Instruction Implementing Counting gNaNs
OPERAND RESULTANT
1 FPN FPN or gNaN (DV =0)
2 qNaN gNaN (DV = Num + Inc)
(DV = Num)

25

40

55

60

65

6

At Row 2, the operand is a gNaN operand having a data
value Num, where Num is an integer that is indicative of a
propagation count, e.g., the number of previous instructions a
gNaN operand has been propagated through. In response to
receiving a gNaN operand, execution of the instruction of
Table 1 will increment the count value of the qNaN operand
data value field to determine an incremented count, and pro-
vide a qNaN resultant having a propagation count equal to the
incremented count.

FIG. 4 shows flow diagram 400, illustrating a method for
handling an instruction that receives a plurality of floating-
point operands and produces a single resultant. Flow diagram
400 begins at step 401 where a floating-point instruction
having two floating-point operands is received.

At step 402, the two floating-point operands are checked to
determine whether both operands are floating-point numbers,
one operand is a qNaN, or if both operands are qNaNs. When
both operands are FPNs, the method proceeds to step 403. At
step 403, the instruction operation is performed, for example
a floating-point divide instruction divides a dividend operand
by a divisor operand and flow proceeds to step 404. At step
404, the result of the floating-point instruction is checked. If
the result of the operation is a QNaN, for example the result of
dividing zero by zero, the method proceeds to step 406, where
the instruction provides a floating-point value resultant that
includes a NaN specifier indicating that the resultant is a
gNaN, and including a NaN propagation count having a pre-
determined value, for example the value ‘0’. Otherwise, flow
proceeds from step 404 to step 407 where the instruction
provides a FPN resultant.

Returning to step 402, when one of the two operands is a
gNaN and the other operand is a FPN, the method proceeds to
step 408. At step 408, the propagation count of the gNaN is
incremented and provided as the propagation count data value
of'a gNaN resultant of the instruction.

When at 402 it is determined that both operands of the
instruction are qNaNs, the method proceeds to step 409. At
step 409, one of the operands is selected to be incremented.
The selection as to which operand is to be incremented can be
based on a comparison of the two NaN data values of the
operands. In one embodiment, the operand with the larger
NaN data value is selected. In another embodiment, the oper-
and with the smaller NaN data value is selected to be incre-
mented, wherein an advantage to selecting the larger count to
increment is that the result indicates the earliest point in time
at which a NaN resultant was generated as the resultant of
non-NaN input operand(s) for this particular sequence of
data-dependent operations. When OPERAND 1 is selected,
the method proceeds to step 410. At step 410 the NaN data
value of OPERAND 1 is incremented and the modified oper-
and is provided as the resultant of the instruction. When
OPERAND 2 is selected at step 409, the method proceeds to
step 411. At step 411 the NaN data value of OPERAND 2 is
incremented and the modified operand is provided as the
resultant of the instruction.

While the flow diagram of FIG. 4 illustrates a specific
example that selects one of two qNaN operands to be incre-
mented based upon which is larger or smaller, it will be
appreciated that other embodiments are possible. Table 2
illustrates various manners in which an arithmetic instruction
can handle qNaN processing. In particular, Table 2 represents
operation of a Divide instruction of the format “DIV DIVI-
DEND DIVISOR DESTINATION”, where DIVIDEND
identifies the dividend, DIVISOR identifies the divisor, and
DESTINATION is where a resultant will be stored.

At Row 1 of Table 2, the floating-point instruction has
received two operands that are floating-point numbers
(FPNs), and a resultant is generated that can be either a FPN,
or a qNaN with a predefined value, as previously described,
based upon the FPN operands.



US 9,244,653 B2

7
TABLE 2

DIV Instruction With Two Operands Implementing Counting NaNs

DIVIDEND DIVISOR RESULTANT

1 FPN FPN FPN or gNaN (DV = 0)

2 qNaN FPN gNaN (DV = Num + Inc)
DV =
Num)

3 FPN qNaN gNaN (DV = Num + Inc)

DV =
Num)

4 qNaN qNaN A) gNaN (DV = Num! + Inc)
(DV = (DV = B) gNaN (DV = Num?2 + Inc)
Numl) Num?) C) gNaN (DV = max(Numl + Inc,

Num? + Inc)

D) gNaN (DV = min(Num! + Inc,
Num? + Inc)

E) gNaN (DV = fn(Numl, Num?2)

At Row 2, the dividend is a qNaN operand having a count
value, Num, where Num is a propagation count as previously
described, and the divisor, is a FPN. In response to receiving
a qNaN dividend, the propagation count of the gNaN will be
incremented to determine an incremented count that is pro-
vided as the propagation count of a qNaN resultant.

At Row 3, the dividend is a FPN and the divisor is a gNaN
having a propagation count, Num. In response to receiving a
gNaN divisor, the propagation count of the gNaN will be

10

15

20

25

8
smaller of the dividend propagation count (Num1) and the
divisor propagation count (Num2) to generate an incre-
mented value and providing the incremented value as the
resultant; E) by determine the resultant data value based on
some other function of Num1 and Num2, such as determining
the sum of Num1 and Num?.

Table 3 illustrates an alternate embodiment of a floating-
point instruction that selectively increments qNaN propaga-
tion counts based upon whether a control indicator is asserted
or negated, such as an indicator that can be stored at register
field 119 of FIG. 1. By way of example, Table 3 represents
operation of a divide instruction of the same format as previ-
ously described with reference to Table 2. In addition to
DIVIDEND and DIVISOR columns, Table 3 includes a col-
umn labeled cqNaN_EN that indicates the state of a control
value that when asserted, e.g., a logic one (1), allows the
propagation count of qNaNs to be incremented, and when
negated, e.g., a logic zero (0), prevents the propagation count
of' qNaNs from being incremented.

At Row 1 of Table 3, the floating-point instruction has
received a dividend and divisor that are both FPNs and the
indicator cqNaN_EN is asserted. In response, a resultant is
generated that can be either a FPN, or a qNaN with a pre-
defined value, as previously described, based upon the FPN
operands.

TABLE 3

Instruction Implementing Counting NaNs with Selective Increment

DIVIDEND DIVISOR cqNaN_EN DESTINATION
1 FPN FPN 1 FPN or gNaN (DV = 0)
2 FPN FPN 0 A) FPNorgNaN (DV = 0)
B) FPN or gNaN (No DV)
3  gNaN FPN/ 1 gNaN (DV = Num + Inc)
(DV =Num)/  gNaN (DV = Num)
FPN
4 gNaN FPN/ 0 A) gNaN (DV = Num)
(DV =Num)/  gNaN (DV = Num) B) FPN or gNaN (No DV)
FPN
5 gNaN qNaN 1 A) gNaN (DV =Numl + Inc)
(DV =Numl) (DV =Num?) B) gNaN (DV =Num?2 + Inc)
C) gNaN (DV = max(Numl,
Num?) + Inc)
D) gNaN (DV =min(Numl,
Num?) + Inc)
E) gNaN DV = fa(Numl, Num?2)
6 gqNaN qNaN 0 A) gNaN (DV =Numl)
(DV =Numl) (DV =Num?) B) gNaN (DV =Num2)
C) gNaN (DV = Predefined)
D) FPN or gNaN (No DV)

incremented to determine an incremented count that is pro-
vided as the propagation count of a qNaN resultant.

AtRow 4, both the dividend and divisor are qNaNs having
propagation counts Num1 and Num2, respectively. Because
the divide instruction results in a single resultant there are
different possibilities of generating a value of the resultant.
For example, the propagation count data value (DV) of the
resultant can be determined A) by always incrementing the
propagation count of the dividend (Num1) and providing the
incremented value as the resultant; B) by always increment-
ing the propagation count of the divisor (Num2) to generate
an incremented value and providing the incremented value as
the resultant; C) by incrementing the larger of the dividend
propagation count (Num1) and the divisor propagation count
(Num2) to generate an incremented value and providing the
incremented value as the resultant; D) by incrementing the

55

60

65

At Row 2 the floating-point instruction has received a
dividend and divisor that are both FPNs and the indicator
cqNaN_EN is negated. In response, the instruction can gen-
erate a resultant in various manners, including A) provide an
FPN or a qNaN with a predefined value representing a count,
e.g., such as zero, as described above; or B) provide a FPN or
a gNaN with no data value representing a count, e.g., the
information in the count field is undefined.

At Row 3 one of the dividend and divisor is an FPN and the
other is a qNaN having a NaN data value that represents a
propagation count, and indicator cqNaN_EN is asserted. In
response, the resultant will be a qNaN with an incremented
count based upon the count of the qNaN operand. At Row 4
one of the dividend and divisor is an FPN and the other
operand is a qNaN having a data value that represents a
propagation count, and indicator cqNaN_EN is negated. In



US 9,244,653 B2

9
response, the propagation count of the qNaN operand is not
incremented and instruction can generated a resultant in vari-
ous manners, including A) provide a qNaN having the same
NaN data value as the qNaN operand, or B) provide a FPN or
a gNaN with no data value representing a count, e.g., the
information in the count field can be undefined.

AtRow 5, both OPERAND 1 and OPERAND 2 are qNaN’s
having defined data values, Num1 and Num2, respectively,
representing propagation counts and indicator cqNaN_EN is
asserted. In response, execution of the instruction results in a
gqNaN resultant with one of the two data values incremented.
The data value incremented can be selected in a variety of
manners including A) always increment the data value of
OPERAND 1; B) always increment the data value of OPER-
AND 2; C) increment the larger data value of the two oper-
ands; D) increment the smaller data value of the two oper-
ands; or E) determine the resultant data value based on some
other function of Num1 and Num?2, such as determining the
sum of Num1 and Num?.

AtRow 6, both OPERAND 1 and OPERAND 2 are qNaN’s
having defined data values, Num1 and Num2, respectively,
representing propagation counts, and indicator cqNaN_EN is
negated. Execution of the instruction results in a qNaN result-
ant with a data value. The data value can be generated in a
variety of manners including A) being equal to the data value
of OPERAND 1; B) being equal to the data value of OPER-
AND 2; ¢) being equal to a predefined value; or D) provide a
FPN or a qNaN with no data value representing a count, e.g.,
the information in the count field can be undefined.

According to further embodiments of the present disclo-
sure, a floating-point value may be a NaN having a plurality of
NaN data values. FIG. 5 illustrates floating-point partition
500 for a NaN having a plurality of NaN data values stored at
fields 501 through 508. Fields 501 through 507 have the same
functions and values as described previously with respect to
fields 201 through 207 of FIG. 2, respectively. In addition, the
partitioning 500 includes NaN Data 2 Field 508 that com-
prises bit positions within floating-point partition 500 distinct
from NaN Data field 507, NaN indicator field 505 and NaN
Type field 505. For purposes of illustration, NaN Data Field
507 and NaN Data 2 Field 508 are shown comprising the least
significant bit positions of floating-point partition 500
although other bit positions may be used according to
embodiments ofthe disclosure. Values of NaN Data Field 507
and NaN Data 2 Field 508 can be collectively referred to as
“data values™ of a qNaN. The operand two data fields can be
used during execution of an instruction to maintain informa-
tion for two operands, as will be better understood with ref-
erence to the example of Table 4.

Table 4 has a similar format as Table 2 and illustrates a
manner in which a particular floating-point instruction, e.g., a
divide instruction by example, can generate a NaN resultant
with two data values based upon one or more NaN operands
with two data values. At Row 1, the NaN evaluation instruc-
tion has received two operands that are floating-point num-
bers, and generates a resultant that is either a FPN or a gNaN
with predefined values for DV1 and DV2, where the zero
indicates a propagation count that indicates the qNaN was
first generated by the current instruction.

10

20

25

30

35

45

50

55

60

65

10
TABLE 4

Floating-point instruction with counting NaN values -
NaN Operands with Multiple Data Values

DIVIDEND DIVISOR RESULTANT

1 FPN FPN FPN or gNaN (DV1 = 0; DV2 = 0)
2 gNaN FPN A) gNaN
(DV1 = (DV1 = Numl + Inc; DV2 = Num?2)
Numl) B) gNaN
(DV2 = (DV1 = Numl + Inc; DV2 = 0)
Num?)
3 FPN qNaN A) gNaN
(DV1 = (DV1 = Numl; DV2 = Num?2 + Inc)
Numl) B) gNaN
(DV2= (DV1 = 0; DV2 = Num? + Inc)
Num?2)
4 gNaN qNaN A) gNaN
(DV1 = (DV1 = (DV1 = Numl + Inc; DV2 = Num?2)
Numl) Num3) B) gNaN
(DV2 = (DV2= (DV1 = Numl + Inc; DV2 = 0)
Num?) Num4) C) gNaN
(DV1 = Num3; DV2 = Num4 + Inc)
D) gNaN
(DV1 =0; DV2 = Num4 + Inc)
E) gNaN
(DV1 = Num! + Inc;
DV2 = Num4 + Inc)
F) gNaN
(DV1 = max(Numl, Num3) + Inc;

DV2 = max(Num?2, Num4) + Inc)

At Row 2, the dividend of the divide instruction is a qNaN
operand having defined data values Num1 and Num2, and the
divisor is a FPN. Evaluation of the floating-point instruction
can generate a resultant in various manners including gener-
ating a resultant that is generated by A) qNaN having a count
that is based on the count data value of the gNaN divisor
(DV1), e.g., Numl is incremented, and second count (DV2)
that is equal to the DV2 data value of the qNaN operand, e.g.,
Num? is propagated but not incremented; or by B) a gNaN
having a count that is based on the count data value of the
gNaN divisor, and a DV2 data value that is equal to a pre-
defined value, such as zero (0).

At Row 3, the dividend is a FPN and the divisor is a gNaN
operand having defined data values Num1 and Num?2 Evalu-
ation of the floating-point instruction results can generate a
resultant in various manners including generating a resultant
that is generated by A) a qNaN having a divisor count (DV2)
that is based on DV2 data value of the gNaN divisor, e.g., an
Num? is incremented, and a DV1 data value that is equal to
the DV1 data value of the qNaN operand; B) a qNaN having
a DV2 that is based on the DV2 data value of the qNaN
operand, e.g., an incremented value, and a DV1 data value
that is equal to a predefined value, such as zero (0).

At Row 4, the dividend is a qNaN operand having defined
data values Numl and Num?2, and the divisor is a qNaN
operand having defined data values Num3 and Num4. Evalu-
ation of the floating-point instruction results in a resultant that
is a gNaN. For example, the resultant can be A) a qNaN
having a DV1 value that is based on DV1 data value of the
divisor, e.g., Num1+1, and a DV2 data value that is equal to
the DV2 data value of the divisor, e.g., Num2+1; B) a gNaN
having a DV1 that is based on DV1 data value of divisor 1,
e.g., Numl+1, and a DV2 data value that is equal to a pre-
defined value, such as zero (0); C) aqNaN having a DV 1 value
that is equal to the DV3 data value of the divisor, and a DV2
data value that is based on the DV2 value of the divisor, e.g.,
Num4+1; D) a gNaN having a DV1 data value that is equal to
apredefined value, such as zero (0), and a DV2 data value that
is based on the DV4 data value of the divisor, e.g., Num4+1;



US 9,244,653 B2

11

E) a gNaN having a DV1 data value that is based on the DV1
value of the dividend, e.g., Num1+1, and a DV2 data value
that is based on the DV4 value ofthe divisor, e.g., Num4+1; or
F)a gNaN having a DV1 data value that is based on the larger
of the dividend DV1 value and the divisor DV1 data value,
and a DV2 data value that is based on the larger of the
dividend DV2 value and the divisor DV2 data value. It will be
appreciated that in other embodiments, the resultant at Row 4
can have its values DV1 and DV2 generated based upon
whether a corresponding operand of the divisor or dividend
has a smaller dividend/divisor data values.

According to a particular embodiment, an exception han-
dler can be configured to not generate exceptions for qNaN
resultants, but to generate exceptions for other conditions,
such as generation of a sNaN resultant. According to a spe-
cific embodiment, an instruction referred to as a “qNaN
evaluation instruction” can be used in executable code to
determine if some or all of its operands are gNaN values, and
if so, provides a resultant of a different type that causes an
exception. For example, in accordance with one embodiment
of the present disclosure, a qNaN evaluation instruction can
generate a sNaN resultant in response to receiving a qNaN
operand, where a sNaN resultant does cause a sNaN excep-
tion to be generated. This can be more efficient than having an
instruction test every resultant to see if it is a qNaN resultant
at a predetermined instruction checkpoint, and invoking the
exception handler if a qNaN that can affect a system’s size
and performance cost.

Note that the sNaN exception that is caused by a sNaN
resultant can be a generic exception, e.g., a floating-point
invalid result exception, or an exception specific to a sNaN.
Furthermore, the qNaN evaluation instruction can propagate
an operand to provide the resultant, wherein the if the operand
is a gqNaN operand the NaN type indicator is changed to
indicate a sNaN, instead of a qNaN, before being provided as
the resultant of the qNaN. In other embodiments, the gNaN
evaluation instruction need not actually produce a NaN
resultant, e.g. a value that would be stored, but instead can set
a control indicator that indicates whether a qNaN was one of
its operands, and if so, generates a sNaN exception without
generating an actual resultant that is stored at a memory
location.

FIG. 6is ablock diagram that represents a gNaN evaluation
instruction 600 that receives one or more floating-point oper-
ands 601, labeled OPERAND 1 through OPERAND n, and
generates a resultant 602 from operands 601. The NaN evalu-
ation logic 603 represents portions of an execution unit that is
used to execute the qNaN evaluation instruction, which may
include combinatorial logic, state machine logic, microcoded
logic or other processor instruction implementation tech-
niques.

FIG. 7 illustrates flow diagram 700 illustrating a method
for performing an embodiment of the present disclosure in
which a data processor executes a qNaN evaluation instruc-
tion represented at FIG. 6 having at least one floating-point
operand. Flow diagram 700 begins with step 701, receiving a
floating-point instruction having at least one floating-point
operand. As described previously, a portion of the floating-
point operand, e.g., the exponent/NaN indicator field, stores
information indicating whether the value of one of operands
represents a floating-point number (FPN) or a qNaN.

In step 702, the operands are evaluated to determine if the
operands meets a particular condition, such as whether an
operand is a gNaN, e.g., is one of the operands of a particular
type. In response to the condition being met the method
progresses to step 703, where an exception is generated. For
example, a gNaN operand value can be modified to indicate a

10

15

20

25

30

35

40

45

50

55

60

65

12

different NaN type, such as a sNaN, that is provided as a
resultant that causes the exception to occur. In response to the
condition not being met at step 702, e.g., the operand is a FPN
and flow proceeds to step 704 where an operand is repro-
duced. Note that while embodiments herein describes provid-
ing a floating-point operand as the resultant of a sNaN evalu-
ation instruction, in other embodiments, a qNaN evaluation
instruction can provide a different type indicator, such as a
non-floating-point resultant, or set an indicator at a specific
register location.

Table 5 illustrates the manner in which a particular gNaN
evaluation instruction operates in accordance with a particu-
lar embodiment of the disclosure. Each row of Table 5 indi-
cates, at the column labeled OPERAND, whether an operand
is a qNaN or a FPN, and a particular resultant at the column
labeled RESULTANT. At Row 1, the NaN evaluation instruc-
tion has received an operand that is a floating-point number
(FPN), and a resultant can be generated that indicates the
resultant was an FPN. For example, the resultant can be A) a
FPN equal to the FPN operand; or B) a predefined indicator,
other than a floating-point value, indicating the operand was
an FPN. It will be appreciated that for each row indicating
multiple possible resultants, that a particular instruction can
be implemented that generates one of the indicated results, or
that a plurality of instructions can be implemented, each
generating one of the indicated results. Examples of provid-
ing a predefined indicator can include providing a non-float-
ing-point value, or setting a register field to various pre-
defined values.

TABLE 5

Embodiments of Signaling NaN Generation With One Operand
OPERAND RESULTANT

1 FPN A) FPN
B) Predefined indicator indicating FPN
2 gNaN A) sNaN (Info = same as qQNaN)
B) sNaN (Info = Predefined)
C) Predefined indicator indicating operand was NaN

At Row 2, the gNaN evaluation instruction has received an
operand that is a qNaN. In response to testing the operand to
determine if one it is a qNaNss, a resultant can be provided that
is A) a floating-point sNaN having the same information as
the qNaN operand, except for the NaN type indicator, e.g., if
the input operand is a qNaN, changing the value of the input
operand to convert it to a sNaN, and then using the converted
result as the resultant to, not that it is also possible to condi-
tionally produce multiple sNaN results, one for each input
operand which is a qNaN, and to pass unchanged those inputs
which are not qNaNs; B) provide a resultant that is a floating-
point sNaN with information that is predefined, e.g., not
propagated; C) provide a resultant, other than a floating-point
value, indicating the operand was a qNaN.

Table 6 illustrates the manner in which a particular gNaN
evaluation instruction that receives multiple operands oper-
ates in accordance with a particular embodiment of the dis-
closure. Each row of Table 6 indicates an instruction operand
at the column labeled OPERAND 1, an instruction operand
at the column labeled OPERAND__ 2, and a resultant and the
column labeled RESULTANT. At Row 1, the qNaN evalua-
tion instruction has received operands that are both FPNs. In
response, a resultant that does not generate an associated
exception can be generated. For example, the resultant can be
A)aFPN equal to the FPN of one of the operands or a function



US 9,244,653 B2

13

based on both operands; or B) a predefined indicator, other
than a floating-point value, indicating the operand was an
FPN.

TABLE 6

Embodiments of Signaling NaN Generation With Two Operands

OPERAND_1 OPERAND_2 RESULTANT

1 FPN1 FPN2 A) One of FPN1, FPN2, or
combination

Predefined indicating FPN
operands

sNaN (No DV)

sNaN (DV = Num1)
sNaN (DV = 1)
Predefined Indicator
sNaN (No DV)

sNaN (DV = Num1)
sNaN (DV = 2)
Predefined Indicator
sNaN (No DV)

sNaN (DV = Num1)
sNaN (DV = Num?)
sNaN (DV = 3)

sNaN (DV = max(Numl,
Num?))

sNaN (DV = min(Num1,
Num?))

Predefined Indicator

2 qNaN FPN

(DV = Numl)

3 FPN qNaN

(DV = Numl)

4 gNaN
(DV = Numl)

gNaN
(DV = Num2)

G)

AtRow 2, OPERAND 1 is a qNaN operand, which may or
may not have a data value, and OPERAND 2 is a FPN. In
response, to OPERAND 1 being a qNaN, a resultant can be
generated that causes a sNaN exception. For example, the
resultant can be A) a floating-point sNaN with no data value;
B) a sNaN value with a data value equal to the data value of
the gNaN OPERAND__1, if any; C) a SNaN having a data
value that indicates OPERAND_ 1 is a qNaN and OPER-
AND_ 2 is an FPN, e.g., DV=1; or D) a predefined indicator,
other than a floating-point value, indicating an operand was a
qNaN.

AtRow 3, OPERAND 1 is FPN operand, and OPERAND
2 is a qNaN that may or may not have a data value. In
response, to OPERAND 2 being a qNaN, a resultant can be
generated that causes a sNaN exception. For example, the
resultant can be A) a floating-point sNaN with no data value;
B) a sNaN value with a data value equal to the data value of
the gNaN operand; C) a sNaN having a data value that indi-
cates OPERAND_ 1 is a FPN and OPERAND 2 isa gNaN,
e.g., DV=2; or C) a predefined indicator, other than a floating-
point value, indicating OPERAND_ 2 was a qNaN.

At Row 4, OPERAND 1 and OPERAND_ 2 ARE gqNaN
operands, which may or may not have a data values repre-
senting propagation counts. In response, to the operands
being qNaNs, a resultant can be generated that causes a sSNaN
exception. For example, the resultant can be A) a floating-
point sNaN with no data value; B) a sNaN value with a data
value equal to the data value of the gNaN OPERAND _ 1; C)
a sNaN value with a data value equal to the data value of the
gNaN OPERAND_ 2; D) a SNaN having a data value that
indicates OPERAND __1 and OPERAND_ 2 are qNaNs, e.g.,
DV=3; or E) a sNaN value with a data value equal to larger of
the data values of OPERAND_ 1 and OPERAND_2; F) a
sNaN value with a data value equal to smaller of the data
values of OPERAND 1 and OPERAND 2; or G) a pre-
defined indicator, other than a floating-point value, indicating
one or both operands were qNaNs.

Each of the various instructions described above can be
implemented as distinct opcodes. The instructions can be

10

15

20

25

40

45

55

65

14

single, or fixed, cycle instructions to be implemented to test
for the gNaN operand and generate resultant(s), and condi-
tional exception generation as the side effect of detecting a
sNaN result which is a simple logical operation on the gNaN.

In a first aspect, a method can include receiving at an
executionunit ofa data processor a first floating point instruc-
tion identifying a first floating point operand comprising a
first portion and a second portion, and in response to deter-
mining at the data processor that a first condition is met that
includes the first portion having a NaN indicator that indicates
the first floating point operand is not a number, incrementing
a first value at the second portion to generate an incremented
value.

In one embodiment of the first aspect, the first value is a
propagation count indicating a number of instructions
through which a NaN operand has been previously propa-
gated. In a further embodiment, the NaN indicator indicates
that the NaN is of a type that does not generate an exception.
In still a further embodiment, the NaN indicator indicates that
the NaN is of a type that does generate an exception in
response to being generated. In yet a further embodiment the
floating point instruction further identifies a second floating
point operand comprising a first portion and a second portion,
and the first condition being met further comprises the first
portion of the second operand indicating the second operand
is a number. In yet another further embodiment, the first
floating point instruction further identifies a second floating
point operand comprising a first portion and a second portion,
and the first condition being met further comprises the first
portion of the second floating point operand having the NaN
indicator indicating that the second floating point operand is
not a number, and, incrementing the first value at the second
portion of the first floating point operand is in response to the
first value at the second portion of the first floating point
operand being greater than a first value at the second portion
of the second floating point operand. In yet another further
embodiment, the first floating point instruction further iden-
tifies a second floating point operand comprising a first por-
tion and a second portion, and the first condition being met
further comprises the first portion of the second floating point
operand having the NaN indicator that indicates the second
floating point operand is not a number, and, incrementing the
first value at the second portion of the first floating point
operand is in response to the first value at the second portion
of'the first floating point operand being less than a first value
at the second portion of the second floating point operand.

In another embodiment of the first aspect, the method
includes providing from the execution unit a resultant of the
first floating point instruction, a first portion of the resultant
indicating the resultant is a NaN, and a second portion of the
resultant having the incremented value. In a further embodi-
ment, the first floating point instruction further identifies a
second floating point operand comprising a first portion and a
second portion, and in response to a second condition being
met that includes the first portion of the first floating point
operand and the first portion of the second point operand each
having NaN indicators, generating a third value as part of the
resultant, the third value based upon a sum of a value at the
first portion of the first floating point operand and a value at
the second portion of the second floating point operand.

In another embodiment of the first aspect, the incremented
value is a first incremented value, and the first floating point
instruction further identifies a second floating point operand
comprising a first portion and a second portion, and in
response to a second condition being met that includes the
first portion of the second floating point operand having the
NaN indicator, incrementing a value at the second portion of



US 9,244,653 B2

15

the second operand to generate a second incremented value.
The method further includes providing from the execution
unit a resultant of the first floating point instruction, the result-
ant comprising a first portion having the NaN indicator, a
second portion having the first incremented value, and a third
portion having the second incremented value.

In a second aspect, a method can include receiving at an
execution unit ofa data processor a first floating point instruc-
tion identifying at least one floating point operand, and gen-
erating a resultant for the first floating point instruction com-
prising a NaN indicator and a predefined value, the predefined
value indicative that the resultant was not determined based
upon a NaN operand.

In one embodiment of the second aspect, the resultant does
not cause an exception to occur. In another embodiment of the
second aspect, the resultant does cause an exception to occur.
In still another embodiment of the second aspect, the method
includes receiving at the execution unit a second instruction
that uses the resultant of the first floating point instruction as
an operand, and generating a resultant for the second instruc-
tion comprising a NaN indicator and an incremented value,
the incremented value being based upon the predefined value
of the resultant for the first floating point instruction. In an
additional embodiment of the second aspect, the first floating
point instruction is an arithmetic instruction. In an even fur-
ther embodiment of the second aspect, in the NaN indicator
resultant does not generate an exception in response to being
generated.

In a third aspect, a processor device that executes floating
point instructions to generate a resultant, each floating point
operand and floating point resultant having a plurality of bit
locations including a first location that includes a first set of
one or more bits and a second location that includes a second
set of one or more bits, the processor device can include a
fetch unit to fetch a floating point instruction, and an execu-
tion unit that, in response to a first condition being present
during execution of the floating point instruction, is to incre-
ment a first value stored at the first location of a first floating
point operand of the floating point instruction to generate a
first incremented value, the first condition being present in
response to a value stored at the second location of the first
operand indicting the first operand is a NaN.

In one embodiment of the third aspect, the execution unitis
further to provide a resultant of the first floating point instruc-
tion that is a NaN having the incremented value at the first
location. In another embodiment of the third aspect, the first
value is selected to be incremented over a second value stored
atathird location of the floating point operand by virtue of the
first value being greater than the second value. In yet another
embodiment of the third aspect, in response to a second
condition being present during execution of the floating point
instruction, the execution unit is to increment a second value
stored at the first location of a second floating point operand
of the floating point instruction to generate a second incre-
mented value, the second condition being present in response
to a value stored at the second location of the second operand
indicating the second operand is a NaN.

In a fourth aspect, a method can include receiving at an
execution unit ofa data processor a first floating point instruc-
tion identifying one or more first floating point operands, each
of'the one or more first floating point operands being floating
point numbers, and responsive to execution of the first float-
ing point instruction generating a NaN, selectively providing
a NaN resultant of a first type or a NaN resultant of a second
type based upon an indicator stored at a storage location,

30

40

45

16

wherein the NaN resultant of the first type causes an excep-
tion to occur, and the Nan resultant of the second type does not
cause an exception to occur.

The specification and drawings should be considered
exemplary only, and the scope of the disclosure is accordingly
intended to be limited only by the following claims and
equivalents thereof. Other embodiments, uses, and advan-
tages of the disclosure will be apparent to those skilled in the
art from consideration of the specification and practice of the
disclosure disclosed herein. For example, the specific
example described above has been with respect to a NaN of
type qNaN, though it will be appreciated that in other embodi-
ments, the techniques described herein can apply to genera-
tion of other types of NaNs as well.

In this document, relational terms such as “first” and “sec-
ond”, and the like, may be used solely to distinguish one
entity or action from another entity or action without neces-
sarily requiring or implying any actual such relationship or
order between such entities or actions. The terms “com-
prises”, “comprising”, or any other variation thereof, are
intended to cover a non-exclusive inclusion, such that a pro-
cess, method, article, or apparatus that comprises a list of
elements does not include only those elements but may
include other elements not expressly listed or inherent to such
process, method, article, or apparatus. An element preceded
by “comprises . . . a” does not, without more constraints,
preclude the existence of additional identical elements in the
process, method, article, or apparatus that comprises the ele-
ment.

What is claimed is:

1. A method comprising:

receiving at an execution unit of a data processor a first

floating point instruction identifying a first floating point
operand comprising a first portion and a second portion;
and

in response to determining at the data processor that a first

condition is met that includes the first portion having a
NaN indicator that indicates the first floating point oper-
and is not a number, incrementing a first value at the
second portion to generate an incremented value.

2. The method of claim 1, wherein the first value is a
propagation count indicating a number of instructions
through which a NaN operand has been previously propa-
gated.

3. The method of claim 2, wherein the NaN indicator
indicates that the NaN is of a type that does not generate an
exception.

4. The method of claim 2, wherein the NaN indicator
indicates that the NaN is of a type that does generate an
exception in response to being generated.

5. The method of claim 2, wherein:

the first floating point instruction further identifies a second

floating point operand comprising a first portion and a
second portion; and

the first condition being met further comprises the first

portion of the second operand indicating the second
operand is a number.

6. The method of claim 2, wherein:

the first floating point instruction further identifies a second

floating point operand comprising a first portion and a
second portion; and

the first condition being met further comprises the first

portion of the second floating point operand having the
NaN indicator indicating that the second floating point
operand is not a number, and, incrementing the first
value at the second portion of the first floating point
operand is in response to the first value at the second



US 9,244,653 B2

17

portion of the first floating point operand being greater
than a first value at the second portion of the second
floating point operand.

7. The method of claim 2, wherein:

the first floating point instruction further identifies a second

floating point operand comprising a first portion and a
second portion; and

the first condition being met further comprises the first

portion of the second floating point operand having the
NaN indicator that indicates the second floating point
operand is not a number, and, incrementing the first
value at the second portion of the first floating point
operand is in response to the first value at the second
portion of the first floating point operand being less than
a first value at the second portion of the second floating
point operand.

8. The method of claim 1, further comprising:

providing from the execution unit a resultant of the first

floating point instruction, a first portion of the resultant
indicating the resultant is a NaN, and a second portion of
the resultant having the incremented value.

9. The method of claim 8 wherein:

the first floating point instruction further identifies a second

floating point operand comprising a first portion and a
second portion; and

in response to a second condition being met that includes

the first portion of the first floating point operand and the
first portion of the second point operand each having
NaN indicators, generating a third value as part of the
resultant, the third value based upon a sum of a value at
the first portion of the first floating point operand and a
value at the second portion of the second floating point
operand.

10. The method of claim 1, wherein the incremented value
is a first incremented value, and the first floating point instruc-
tion further identifies a second floating point operand com-
prising a first portion and a second portion; and

in response to a second condition being met that includes

the first portion of the second floating point operand
having the NaN indicator, incrementing a value at the
second portion of the second operand to generate a sec-
ond incremented value; and

providing from the execution unit a resultant of the first

floating point instruction, the resultant comprising a first
portion having the NaN indicator, a second portion hav-
ing the first incremented value, and a third portion hav-
ing the second incremented value.

11. A method comprising:

receiving at an execution unit of a data processor a first

floating point instruction identifying at least one floating
point operand; and

generating a resultant for the first floating point instruction

comprising a NaN indicator and a predefined value, the

18

predefined value indicative that the resultant was not
determined based upon a NaN operand.
12. The method of claim 11, wherein the resultant does not
cause an exception to occur.
5 13. The method of claim 11, wherein the resultant does
cause an exception to Occur.

14. The method of claim 11, further comprising:

receiving at the execution unit a second instruction that

uses the resultant of the first floating point instruction as
an operand; and

generating a resultant for the second instruction compris-

ing a NaN indicator and an incremented value, the incre-
mented value being based upon the predefined value of
the resultant for the first floating point instruction.

15. The method of claim 11, wherein the first floating point
instruction is an arithmetic instruction.

16. The method of claim 11, where in the NaN indicator
resultant does not generate an exception in response to being
generated.

17. A processor device that executes floating point instruc-
tions to generate a resultant, each floating point operand and
floating point resultant having a plurality of bit locations
including a first location that includes a first set of one or more
bits and a second location that includes a second set of one or
more bits, the processor device comprising:

a fetch unit to fetch a floating point instruction; and

an execution unit that, in response to a first condition being

present during execution of the floating point instruc-
tion, is to increment a first value stored at the first loca-
tion of a first floating point operand of the floating point
instruction to generate a first incremented value, the first
condition being present in response to a value stored at
the second location of the first operand indicting the first
operand is a NaN.

18. The processing device of claim 17, wherein the execu-
tion unit is further to provide a resultant of the first floating
point instruction that is a NaN having the incremented value
at the first location.

19. The processing device of claim 17, wherein the first
value is selected to be incremented over a second value stored
atathird location of the floating point operand by virtue ofthe
first value being greater than the second value.

20. The processing device of claim 17, wherein:

in response to a second condition being present during

execution of the floating point instruction, the execution
unit is to increment a second value stored at the first
location of a second floating point operand of the float-
ing point instruction to generate a second incremented
value, the second condition being present in response to
avalue stored at the second location of the second oper-
and indicating the second operand is a NaN.

20

30

35

40

45

50

#* #* #* #* #*



